Urolithiasis (1 of 11)

1. Patient presents with lower urinary tract symptoms (LUTS) suggestive of urolithiasis

2. DIAGNOSIS
 - Is urolithiasis confirmed?
 - No → ALTERNATIVE DIAGNOSIS

3. CLASSIFY THE TYPE OF KIDNEY STONES
 - Calcium oxalate stones
 - Cystine stones
 - Struvite or infection stones
 - Urate containing stones
 - Calcium phosphate stones

A. Non-pharmacological therapy
 - Watchful waiting
 - Diet therapy

B. Pharmacological therapy
 - Alkaline citrate
 - Allopurinol
 - Sodium bicarbonate
 - Thiazide diuretic (Hydrochlorothiazide)

C. Surgery
D. Follow-up

TREATMENT
See next page

Not all products are available or approved for above use in all countries. Specific prescribing information may be found in the latest MIMS.
Urolithiasis (2 of 11)

TREATMENT OF KIDNEY STONES

CYSTINE STONES

A Non-pharmacological therapy
- Watchful waiting
- Diet therapy

B Pharmacologic therapy
- Alkaline citrate or
- Sodium bicarbonate
- Tiopronin

C Surgery

D Follow-up

STRUVITE OR INFECTION STONES

A Non-pharmacological therapy
- Watchful waiting
- Diet therapy

B Pharmacological therapy
- Acetohydroxamic acid
- Antibiotics
- Sodium bicarbonate

C Surgery

D Follow-up

urate-containing stones

A Non-pharmacological therapy
- Watchful waiting
- Diet therapy

B Pharmacological therapy
- Alkaline citrate
- Allopurinol
- Sodium bicarbonate

C Surgery

D Follow-up

Not all products are available or approved for above use in all countries. Specific prescribing information may be found in the latest MIMS.
UROLITHIASIS

1. **UROLITHIASIS**

- The formation of urinary stones in the kidney, bladder &/or urethra
- The hallmark of obstruction in the ureter & renal pelvis is the sudden onset of excruciating, intermittent pain that radiates from the flank to the groin or to the genital area & inner thigh
- Painful urologic disorder that occurs in 12% of the global population & has a high recurrence rate of 71-80% among male patients
- Lower urinary tract symptoms associated w/ urolithiasis are:
 - Urgency
 - Frequency
 - Urge incontinence
 - Dysuria
 - Hematuria (gross or microscopic)
- Stone incidence depends on the following factors:
 - Geographical
 - Climatic
 - Ethnic
 - Dietary
 - Genetic

2. **DIAGNOSIS**

History

- A detailed history from the patient should be elicited
- Thorough review of medical records should include:
 - Number & frequency of episodes
 - Previous imaging studies, interventions, evaluations & treatments
- Family history that may reveal genetic predisposition:
 - Cystinuria (type A, B & AB)
 - 2,8 Dihydroxyadeninuria
 - Xanthinuria
 - Renal tubular acidosis (RTA type 1)
 - Primary hyperoxaluria
 - Lesch-Nyhan syndrome
 - Cystic fibrosis
- General factors:
 - Early onset of urolithiasis (especially in children & teenagers)
 - Familial stone formation
 - Brushite-containing stones (calcium hydrogen phosphate)
 - Uric acid & urate-containing stones
 - Infection stones
 - Solitary kidney
- Dietary history of the patient:
 - Average daily intake of fluids (amount & specific beverages)
 - Eating habits (meals & snacks)
 - Calcium, sodium, high oxalate-containing food
 - Fruits & vegetables
- Nutritional factors associated w/ stone diseases:
 - Calcium intake that is below or significantly above the recommended dietary allowance (RDA)
 - Low fluid intake
 - High sodium intake
 - Limited intake of fruits
 - Vegetables & high intake of animal-derived purines

Not all products are available or approved for above use in all countries.

Specific prescribing information may be found in the latest MIMS.
History (Cont’d)

- Complete list of current prescription & over-the-counter drugs, as well as vitamins & supplements should be obtained; stone-provoking medications include:
 - Probenecid
 - Some protease inhibitors
 - Lipase inhibitors
 - Triamterene
 - Chemotherapy
 - Vitamins C & D
 - Carbonic anhydrase inhibitors (eg Topiramate, Acetazolamide, Zonisamide)

- Conditions associated w/ stone disease:
 - Obesity
 - Gout
 - Hyperparathyroidism
 - Renal tubular acidosis type 1
 - Diabetes mellitus type 2
 - Bone disease
 - Primary hyperparathyroidism
 - Bariatric surgery
 - Bowel or pancreatic disease
 - Nephrocalcinosis
 - Sarcoidosis
 - Due to jejunoileal bypass & intestinal resection

- Anatomical abnormalities associated w/ stone formation:
 - Medullary sponge kidney (tubular ectasia)
 - Ureteropelvic junction (UPJ) obstruction
 - Calyceal diverticulum, calyceal cyst
 - Ureteral stricture
 - Vesico-uretero-renal-reflux
 - Horseshoe kidney
 - Ureterocele

Physical examination

- Should include the weight, blood pressure, costovertebral angle tenderness & lower extremity edema, as well as signs of primary hyperparathyroidism (HPT) & gout in the assessment

Diagnostic tests

- Serum chemistries should include electrolytes (eg sodium, potassium, chloride, bicarbonate, calcium, creatinine, & uric acid) to uncover hypokalemia or renal tubular acidosis (RTA)
- Parathyroid hormone (PTH) level should be measured if there is high normal or elevated serum & urine calcium concentration
- Level of 25-hydroxy vitamin D should also be investigated to rule out the possibility of vitamin D deficiency in patients w/ elevated PTH
- Urinalysis should include dipstick, microscopic evaluation (urinary pH, indicators of infection & identification of crystals that are pathognomonic of stone type)
- 24-hour urine collection/metabolic testing
 - The cornerstone for which the therapeutic recommendations are based
 - At least two samples are collected, while consuming their usual diet & volume of fluid
 - Metabolic testing should analyze total volume, pH, calcium, oxalate, uric acid, citrate, sodium, potassium & creatinine
 - Urinary potassium measured at baseline can be compared to urinary potassium obtained during follow-up, to gauge compliance w/ medication regimens
 - Urinary cystine should additionally be measured in stone formers w/ known cystine stones or a family history of cystinuria or for those in whom cystinuria is suspected
 - Primary hyperoxaluria should be suspected when urinary oxalate excretion exceeds 75 mg/day in adults w/o bowel dysfunction
 - These patients should be considered for referral for genetic testing &/or specialized urine testing

Not all products are available or approved for above use in all countries.

Specific prescribing information may be found in the latest MIMS.
Diagnostic tests (Cont’d)

Basic laboratory analysis in emergency cases
- Urine (e.g., dipstick test of spot urine sample, urine microscopy &/or culture)
- Serum blood sample (e.g., creatinine, uric acid, ionized calcium, sodium & potassium)
- Blood cell count
- Coagulation test, if intervention is likely or planned

Basic laboratory analysis in non-emergency cases
- Biochemical work-up is similar for all patients but if there is no planned intervention, then sodium, potassium, & blood coagulation time can be omitted

Imaging
- Choice of imaging modality will depend on the clinical situation of the patient
- Indicated for patients w/ fever or solitary kidney & when diagnosis is doubtful
- Used to differentiate ureteral stones from renal stones

Ultrasound (UTZ)
- Used as the primary diagnostic tool
- Identifies presence of stones in the calices, pelvis, pyeloureteric & vesicoureteric junctions, & in patients w/ upper urinary tract dilatation

Kidneys, Ureter & Bladder (KUB) radiography
- Helpful in differentiating radiolucent & radiopaque stones
- Used for comparison during follow-up
- Should not be performed if non-contrast CT scan (NCCT) is being considered

Evaluation of patient w/ acute flank pain

NCCT
- First choice in confirming stone diagnosis in patients w/ acute flank pain
- Significantly more accurate than intravenous urography (IVU)/intravenous pyelogram (IVP) in evaluating patients w/ acute urolithiasis
- Used to determine the diameter, density, inner structure & skin-to-stone distance that affects the outcome of extracorporeal shockwave lithotripsy (SWL)
- Can detect uric acid & xanthine stone that are radiolucent on plain films

Low-Dose CT Scan
- Can reduce radiation risk
- Used to detect ureteral stones in patients w/ a BMI of <30

Classification & Analysis of Stones

Classification of urinary stones

Size
- Usually given in one or two dimensions & is stratified to those measuring up to 5, 5-10, 10-20 & 20 mm in largest diameter

Location
- Classified according to anatomical position: upper, middle or lower calyx, renal pelvis, upper, middle or distal ureters & urinary bladder

X-ray characteristics
- Classified according to plain X-ray appearance (e.g., kidney-ureters-bladder (KUB) radiography), according to mineral composition
- NCCT is used to classify stones according to density, structure & composition

Etiology of formation
- Non-infectious (e.g., calcium oxalate, calcium phosphate, uric acid)
- Infectious (e.g., magnesium, ammonium phosphate, carbonate apatite, ammonium urate)
- Genetic causes (e.g., cystine, xanthine, 2,8 dihydroxyadenine)
- Further diagnostic tests & management depends on the composition of the stone
- Risk status of the stone formers should be assessed because it will define the probability of recurrence or regrowth & is imperative for the choice of pharmacological treatment
Analysis of stone composition
- Preferred analytical procedures are infrared spectroscopy (IRS) & X-ray diffraction analysis of urinary stones
- Repeat stone analysis is needed in cases of:
 - Recurrence after pharmacological intervention
 - Early recurrence after interventional therapy w/ complete stone clearance
 - Late recurrence after a prolonged stone-free period since stone composition may change overtime

Stone types
Calcium stones (oxalate & phosphate)
- Most common type of kidney stone
- Formed when there is high level of calcium in the urine
- Characterized as either large & smooth or rough & spiky

Calcium stones (oxalate & phosphate)
- Diseases & disorders related to calcium stones:
 - Hypercalciuria (inherited condition)
 - Renal tubular acidosis
 - Nephrocalcinosis
 - Primary hyperparathyroidism
 - Kidney disease
 - Sarcoidosis (granulomatous disease)
 - Primary hyperoxaluria
 - Enteric hyperoxaluria

Struvite or infection stones
- May originate de novo or grow on pre-existing stones infected w/urea-splitting bacteria
- Predisposing factors for stone formation:
 - Neurogenic bladder
 - Spinal cord injury or paralysis
 - Continent urinary diversion
 - Ileal conduit
 - Foreign body
 - Stone disease
 - Indwelling urinary catheter
 - Urethral stricture
 - Benign prostatic hyperplasia
 - Bladder diverticulum
 - Cystocele
 - Caliceal diverticulum
 - Uteropelvic junction (UPJ) obstruction

Uric acid & ammonium urate stones
- Associated w/ hyperuricosuria or low urinary pH
- Hyperuricosuria may be due to dietary excess, endogenous overproduction (enzyme defects), myeloproliferative disorders, tumor lysis syndrome, drugs, gout & catabolism
 - Ammonium urate stones are rare & are associated w/ inflammatory bowel disease (IBD), ileostomy diversion, laxative abuse, potassium deficiency, hypokalemia & malnutrition
 - Forms in the urine at pH <6.5 (ammonium urate crystals) & <5.5 (uric acid stones)

Cystine stones
- Poorly soluble in urine & crystallizes spontaneously w/in the physiological urinary pH at 6.0
- Clinical manifestations are the same for patients who are genotypic or phenotypic type of cystinuria

Other stone types
2,8-Dihydroxyadenine stones & xanthine stones
- Both stone types were rare & the diagnosis is similar to that of uric acid
- Genetically determined defect of adenine phosphoribosyl transferase that causes high urinary excretion
- Decreased levels of serum uric acid are seen in patients who forms xanthine stones

Not all products are available or approved for above use in all countries.
Specific prescribing information may be found in the latest MIMS.
3 Classification & Analysis of Stones (Cont’d)

Other stone types (Cont’d)

Drug stones
- These are induced by pharmacological treatment & exists as:
 - Stones formed due to unfavorable changes in urine composition under drug therapy & by the crystallized compounds of the drug
- Compounds that causes drug stones:
 - Allopurinol/oxypurinol
 - Amoxicillin/ampicillin
 - Ceftriaxone
 - Quinolones
 - Ephedrine
 - Indinavir
 - Magnesium trisilicate
 - Sulphonamides
 - Triamterene
 - Zonisamide
- Substances impairing urine composition:
 - Acetazolamide
 - Allopurinol
 - Aluminium magnesium hydroxide
 - Ascorbic acid
 - Calcium
 - Furosemide
 - Laxatives
 - Methoxyflurane
 - Vitamin D
 - Topiramate

Matrix stones
- Pure matrix stones are extremely rare
- More prevalent among females
- Main risk factors are:
 - Urinary tract infections (UTIs) due to *Proteus mirabilis* or *Escherichia coli*
 - Previous surgery for stone disease
 - Chronic renal failure
 - Hemodialysis

Not all products are available or approved for above use in all countries. Specific prescribing information may be found in the latest MIMS.
A NON-PHARMACOLOGICAL THERAPY

Watchful Waiting
- Since most stones are small, about 5 mm in size, the patient is advised for the passage of stones through normal urination, that usually happens w/in 2-3 days
- A collection kit is provided w/ filter & the patient is instructed to collect the passed stone for testing & analysis

Diet therapy
- All stone formers are advised to have a fluid intake that will achieve a urine volume of at least 2.5 liters daily
- Limit sodium intake & consume 1,000-1,200 mg per day
 - Lower calcium diet in the absence of other specific dietary measures increases the risk of stone formation
- Limit the intake of oxalate-rich foods & maintain normal calcium consumption
- Increase the intake of fruits & vegetables
 - Hypocitruria is common among patients w/ stone disease, w/ a prevalence of 20-60%
 - Promoted by RTA, chronic diarrhea & carbonic anhydrase inhibitor
- Limiting the intake of non-dairy animal protein may help reduce stone recurrence
 - Patients w/ a history of uric acid stones should be counseled to:
 - Increase the intake of alkali & decrease the intake of acids
 - Increase the urine pH
 - Reduce the urinary acidity

B PHARMACOLOGICAL THERAPY

Alkaline citrate (Sodium & Potassium)
- A urinary alkalinizer used to prevent uric acid or cystine calculi formation
- Also used as an adjuvant w/ uricosuric agents in gout therapy
- Effective in correcting the acidosis of certain renal tubular disorders
- Contraindicated in patients w/ severe renal impairment w/ oliguria or azotemia, untreated Addison’s disease & severe myocardial damage

Allopurinol
- Inhibits xanthine oxidase & reduces the production of uric acid w/o disrupting the biosynthesis of vital purines
- Used in the prevention of gout, renal calculi due to uric acid or calcium oxalate, prophylaxis & treatment of uric acid nephropathy
- Contraindicated in patients w/ idiopathic hemochromatosis & asymptomatic hyperuricemia

Chlorthalidone
- A long-acting antihypertensive/diuretic that enhances the excretion of sodium, chloride ions & water by interfering w/ the transport of sodium ions across the renal tubular epithelium
- Contraindicated in patients w/ known anuria & hypersensitivity to other sulfonamide-derived drugs

Thiazide diuretics (Hydrochlorothiazide)
- Inhibits the sodium reabsorption in the distal tubules & as a result, the excretion of sodium, water, potassium & hydrogen ions increases
- Used as treatment for hypercalciuria & calcium stone recurrence
- Contraindicated in patients w/ known anuria & hypersensitivity to other sulfonamide-derived drugs

Sodium bicarbonate
- Raises blood & urinary pH by dissociation to provide bicarbonate ions, which neutralizes the hydrogen ion concentration
- Used to alkalize the urine & to titrate the dose to achieve the desired urinary pH
- Contraindicated in patients w/ alkalosis, hypernatremia, severe pulmonary edema, hypocalcemia & unknown abdominal pain

Tiopronin
- An active reducing agent that undergoes a thiol-disulfide exchange w/ cystine & forms a tiopronin-cystine disulfide
- It decreases the amount of soluble cystine in the urine & reduces the formation of cystine calculi
- Contraindicated in patients w/ prior history of developing agranulocytosis, aplastic anemia or thrombocytopenia

© MIMS 2019

Not all products are available or approved for above use in all countries. Specific prescribing information may be found in the latest MIMS.
Indications for active removal of stones:
- Choice of treatment or patient preference
- Comorbidity (e.g., hypertension, diabetes, obesity, dyslipidemia & gout)
- Infection (e.g., pyelonephritis)
- Obstruction caused by stones
- Patients who are high-risk stone formers
- Stone size of ≥6 mm after a period of watchful waiting
- Symptomatic stones (e.g., presence of pain & hematuria)

Special problems encountered in stone removal:
- Presence of caliceal diverticulum stones
- Patient has horseshoe kidneys
- Patients with UPJ obstruction

Extracorporeal Shockwave Lithotripsy (SWL)
- A non-invasive & non-aesthetic procedure, & the first choice of treatment for stone size <1.5 cm
- Success depends on the efficacy of the lithotriper & some factors:
 - Size, composition & location of the stones
 - Patient’s habitus
 - Performance of SWL
- Contraindications include:
 - Arterial aneurysms
 - Anatomical destruction distal to the stones
 - Bleeding diathesis
 - Infection
 - Severe skeletal malformations
 - Severe obesity
 - Uncontrolled UTIs

Percutaneous Nephrolithotomy (PNL)
- Standard procedure for large renal calculi
- Different rigid & flexible endoscopes are used in this procedure & it depends on the preference of the surgeon
- Contraindications include:
 - Patients on anticoagulant therapy
 - Untreated UTI
 - Tumour in the presumptive access tract area
 - Potential malignant kidney tumour
 - Pregnancy
- Complications associated w/ PNL:
 - Fever
 - Bleeding
 - Urinary leakage
 - Problems due to residual stones
 - Steinstrasse
 - Accumulation of stone fragments or stone gravel in the ureters
 - Major factor for its formation is the size of the stone
 - If asymptomatic, then conservative treatment is the initial option
 - For steinstrasse associated w/ UTI & fever, percutaneous nephrostomy is indicated
 - When large stones fragments are present, shockwave lithotripsy is indicated

Uteroscopic Lithotripsy - Rigid & Flexible (URS)
- A minimally invasive procedure that is used for both ureteric & renal stones as an alternative treatment to SWL
- Can be performed under a local, intravenous or general anesthesia
- URS may be used in patients who had failed previous treatment attempts, stones too large for ESWL, strictures, tumors, stones in children, those w/ bleeding disorders & obese
- Stone-free rate status w/ larger stones is achieved earlier w/ URS
Dosage Guidelines

HYPERURICEMIA & GOUT PREPARATIONS

<table>
<thead>
<tr>
<th>Drug</th>
<th>Dosage</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allopurinol</td>
<td>200-300 mg PO 12-24 hrly</td>
<td></td>
</tr>
</tbody>
</table>

Adverse Reactions

- Dermatological effects (exfoliative dermatitis, pruritus, maculopapular rash);
- GI effects (N/V);
- CNS effects (headache, vertigo, drowsiness);
- Hematological effects (leucopenia, thrombocytopenia, hemolytic & aplastic anemia);
- Other effects (arthralgia, fever, visual & taste disturbances)

Special Instructions

- Use w/ caution in patients w/ known hepatic/renal disease & those w/ poor uric acid clearance
- Contraindicated in patients w/ liver disease, bone marrow suppression, idiopathic hemochromatosis & asymptomatic hyperuricemia

All dosage recommendations are for non-pregnant & non-breastfeeding women, & non-elderly adults w/ normal renal & hepatic function unless otherwise stated.

Not all products are available or approved for above use in all countries. Products listed above may not be mentioned in the disease management chart but have been placed here based on indications listed in regional manufacturers’ product information.

Specific prescribing information may be found in the latest MIMS.
OTHER DRUGS ACTING ON THE GENITO-URINARY SYSTEM

<table>
<thead>
<tr>
<th>Drug</th>
<th>Dosage</th>
<th>Adverse Reactions</th>
<th>Special Instructions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Potassium citrate</td>
<td>Patients w/ mild hypocitraturia: 30 mEq PO 8 hrly</td>
<td>• GI effects (abdominal discomfort, N/V, diarrhea)</td>
<td>• Should follow a diet low in salt & is advised to increase intake of fluids</td>
</tr>
<tr>
<td></td>
<td>Patients w/ severe hypocitraturia: 60 mEq PO 8 hrly</td>
<td></td>
<td>• Use w/ caution in patients w/ altered potassium excretion mechanism & renal insufficiency</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Contraindicated in patients w/ renal insufficiency, persistent alkaline urinary infections, obstruction of the urinary tract, hyperpotassemia, adrenal insufficiency, respiratory or metabolic alkalosis, active peptic ulcer, intestinal obstruction, patients who have submitted to anticholinergic therapy & w/ slow gastric emptying</td>
</tr>
<tr>
<td>Sambong (Blumea balsamifera Leaf)</td>
<td>1,000 mg PO 8 hrly</td>
<td>• GI effects (abdominal discomfort, N/V, diarrhea)</td>
<td>• Use w/ caution in patients w/ excretory urogram that shows signs of renal obstruction</td>
</tr>
<tr>
<td>Tiopronin</td>
<td>Initial dose: 800 mg PO 8 hrly</td>
<td>• CNS effects (chills, fatigue, fever); Dermatological effects (bruising, pemphigus, pruritus, rash, skin friability/ wrinking, iritis, warts); GI effects (abdominal pain, anorexia, bloating, diarrhea, flatulence, loss of taste perception, oral ulceration, N/V); Hematological effects (anemia, bleeding, eosinophilia, leukopenia, thrombocytopenia); Hepatic effects (jaundice, abnormal liver function tests); Neuromuscular & skeletal effects (arthritis, myalgia, myasthenia gravis, weakness); Renal effects (Goodpasture's syndrome, hematuria, nephrotic syndrome, proteinuria); Respiratory effects (bronchiolitis, dyspnea, hemoptyisis, laryngeal edema, pharyngitis, pulmonary infiltrates, respiratory distress); Others (elastosis perforans serpiginosa, hypersensitivity, loss of smell, lupus-like syndrome, lymphadenopathy, positive ANA test)</td>
<td>• Patient should continue drinking at least 3 liters of fluid while taking this medication</td>
</tr>
<tr>
<td></td>
<td>Average dose: 1000 mg PO 24 hrly</td>
<td></td>
<td>• Contraindicated in patients w/ known agranulocytosis, aplastic anemia or thrombocytopenia that has developed from this medication</td>
</tr>
</tbody>
</table>

All dosage recommendations are for non-pregnant & non-breastfeeding women, & non-elderly adults w/ normal renal & hepatic function unless otherwise stated. Not all products are available or approved for above use in all countries. Products listed above may not be mentioned in the disease management chart but have been placed here based on indications listed in regional manufacturers’ product information. Specific prescribing information may be found in the latest MIMS. Please see end of this section for the reference list.